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Summarv 

can provide the accuracy needed for the flight measurement of viscosity near the 
liquid-vapor critical point of xenon. The procedure, which makes use of the viscometer's 
wide bandwidth and hydrodynamic similarity, allows the viscometer to be self-calibrating. 
To demonstrate the validity of this procedure we measured the oscillator's transfer function 
under a wide variety of conditions. We obtained data using CO, at temperatures spanning 
a temperature range of 35 K and densities varying by a factor of 165, thereby encountering 
viscosity variations as great as 50%. In contrast the flight experiment will be performed 
over a temperature range of 29 K and at only a single density, and the viscosity is expected 
to change by less than 40%. 

The measurements show that, after excluding data above 10 Hz (where 
frequency-dependent corrections are poorly modeled) and making a plausible adjustment 
to the viscosity value used at high density, the viscometer's behavior is fully consistent 
with the use of hydrodynamic similarity for calibration. Achieving this agreement required 
understanding a 1% anelastic effect present in the oscillator's torsion fiber. 

We have devised a calibration procedure for the oscillating screen viscometer which 
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1. Introduction 
Of the several goals of the Critical Viscosity Experiment, the most easily 

quantifiable is determination of the exponent for the divergence of viscosity near the 
liquid-vapor critical point. In order to meet the nominal goal of determining this exponent 
to within *1% without reliance on the details of an accurate crossover theory, the measured 
viscosity must be proportional to the true viscosity to within *0.2% [l]. Achieving this 
requires accurate knowledge of three aspects of the experiment. These are the viscometer's 
hydrodynamics, all nonviscous forces, and instrumental effects such as amplifier 
nonlinearity. 

Because measurement of viscosity to an absolute accuracy of *0.2% is difficult, it  is 
rarely achieved. Fortunately, in order to test the theory for the viscosity divergence, it is 
unimportant if the measured viscosity differs from the true viscosity by an arbitrary scale 
factor. To quantify the effects of other errors, suppose that the measured viscosity qm is a 
quadratic function of the true viscosity 7, namely 

(1) 
2 

Vm = "071 + "19 + (a2/91)9 9 

where q1 is a reference viscosity far from Tc. The important error is the deviation from 
proportionality. For small errors, this quantity can be written as 

The suffix 2 refers to the reduced temperature 2 ~ 1 0 ~ .  If the reference viscosity is at the 

reduced temperature 2x104, then the change of viscosity anticipated in the flight 
experiment is approximately 

In Eq.(2), the value of a1 need not be known; rather the sum of the first term, or "zero 
offset", and the second term, or "nonlinearity", must be less than 0.2%. 

The hydrodynamic theory for most viscometers starts with an ideal geometry, for 
example a cylinder. Corrections for nonideal features such as edges or ellipticity are almost 
always required, and they are either calculated with an elaboration of the hydrodynamic 
model or measured in ancillary experiments. These corrections must be known throughout 
the ranges of frequency, density, and viscosity in which the viscometer operates. For the 
oscillating screen viscometer, the ideal geometry is the transversely oscillating cylinder. 
The most important correction to this model is the use of an effective cylinder radius 
chosen to best match the oscillator's behavior. To achieve the needed accuracy by this 
route, further corrections, determined by experiments with calibrating fluids and possibly 
of an ad hoc form, would be needed. 
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However, there is another, more powerful method to accurately characterize the 
hydrodynamics of the oscillating screen viscometer, made possible by the fact that the 
viscometer is sensitive to viscosity over a relatively wide frequency bandwidth. As 
explained in Section 2 on hydrodynamic similarity, this method does not rely on a specific 
hydrodynamic model, and it allows the viscometer to be self-calibrating. 

The calibration tests described in Section 3 verified the applicability of 
hydrodynamic similarity for measuring changes in the viscosity with the oscillating screen. 
Our measurements of viscosity changes were consistent with the best viscosity 
measurements available in the literature ("*O.l%"). We note that, because we were 
comparing chaneres of the viscosity, the accuracy of this comparison was *l% at best, worse 
than the required &0.2%. However, the consistency achieved in a wide range of conditions 
described in Section 3 gives us confidence that the instrument has the necessary accuracy 
for use in the Critical Viscosity Experiment. 

Section 4 outlines a calibration procedure based hydrodynamic similarity. 

2. Hvdrodvnamic similarity 

H(w) ,  defined by 
An torsion oscillator can be characterized by measurements of its transfer function 

H(w) E -* 7 - w  (4) 
where O(w) and ~ ( w )  are the measured angular displacement and ~ ( u )  is the applied torque. 
(At present we can measure only the product ktrH, where ktr is an inaccurately known 
transducer coefficient assumed to be independent of frequency.) By immersing i t  in a fluid, 

an oscillator can be used as a viscometer, but only over a finite frequency bandwidth. This 
bandwidth can be defined as the frequency range where the viscometer's sensitivity, defined 
by the dimensionless quantity 

(5 )  
is comparable to unity. (Fig. 1 shows examples.) For h i g h 4  oscillators the sensitivity is 
significant only in a narrow frequency range near the vacuum resonance frequency wo. In 
contrast, for a low+ oscillator such as the oscillating screen viscometer, viscosity can be 
measured over a broad frequency range. Equivalently, at  a fixed density p and viscosity q, 
the viscometer is sensitive to viscosity over a broad range of viscous penetration lengths 6, 

I 
I 
a defined by 

e 
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Although hydrodynamic similarity most often refers to scaling of the Navier-Stokes 
equation with the Reynolds number, here we are interested in the similarity that exists for 
small amplitude oscillatory flow. The linear Navier-Stokes equation can then be written in 
terms of a dimensionless velocity, pressure, time, and spatial derivative, u ' ,  p', t', and V I  
by rescaling their dimensional equivalents with respect to a characteristic length R, a 

characteristic time w-l, and a characteristic pressure qw. The result, 

2 is an equation parameterized only by the ratio (6/R) . 

oscillator's response function H( w) in terms of the dimensionless frequency nzu/w0: 
This result ca,n be combined with the harmonic oscillator equation to give the 

H(w)-' = kd(l-o2) + in2(p/p,)B(R/6)] . 
Here, p and ps are the densities of the fluid and the oscillator body respectively, kg is the 
oscillator's spring constant, and B(R/6) is a function characteristic of the oscillator's 

geometry. (The convention e+iwt is used.) The most important feature of Eq.(8) is that 
the oscillator's transfer function deDends on the fluid's viscositv only through the viscous 
penetration length. 

Eq.(8) requires that the oscillator be characterized by only the undamped resonance 
2 frequency wo, the oscillator's density p,, and the spring constant, kg = Iwo, where I is the 

oscillator's moment of inertia. The frequency wo can be accurately measured in vacuum. 
The value chosen for the oscillator's density ps is unimportant because it divides the 
function B(R/6). In effect the product (p /ps)B is measured in the calibration. For the 
oscillating screen, we estimated ps by weighing a representative piece of the screen and 
then modeling the screen as a single cylinder of radius R. The geometry of the oscillator's 
torsion fiber was too complex to calculate the spring constant kg to the needed accuracy. 
However, the ratio ktr/kp where ktr is the transducer coefficient, could be obtained 
directly by measuring the response function H(w) in the limit of 0 Hz. This required an 
understanding of the torsion fiber's anelasticity, described in Appendix C. 

The function B(R/6) is known exactly only for simple geometries. For an 
arbitrarily complicated geometry, it can be inferred from measurements of the oscillator's 
transfer function. 

For an imperfectly known geometry, the dependence of B on the viscous penetration length 
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6 can be obtained by either (1) the use of a single frequency with various calibrating fluids 
or by (2) the use of a single calibrating fluid measured at various frequencies. The first 
strategy is limited by the accuracy of the calibrating fluids' viscosities. (Density 
inaccuracy is assumed to be insignificant.) In contrast, because the second strategy makes 
use of only one fluid, it is potentially highly accurate for calibrating a viscometer intended 
to measure relative changes, as is the case for the planned Critical Viscosity Experiment. 
The second strategy can be implemented only in a wide-bandwidth viscometer, also true 
for the planned flight experiment. Appendices A and B explain in more detail the necessity 
of using a l o w 4  oscillator to achieve a wide bandwidth in the viscosity measurement. 

hydrodynamic geometry function B(R/6) over a range of viscous penetration lengths 
encompassing the intended operating conditions. This can be done with any fluid having a 
kinematic viscosity similar to xenon. Furthermore, for the measurement of relative 
viscosity changes, the viscometer is self-calibrating, namely no fluid other than xenon will 
be needed. 

Self-calibration is possible because the anticipated variation of 6 caused by 
changing the temperature is less than the variation of 6 induced by changing the frequency 
at a single temperature. For example, for the flight experiment in xenon close to Tc, 6 at 
5 Hz is expected to be no more than 20% greater than the minimum far from Tc. The 
same penetration length can be obtained far from Tc at 3.5 Hz, which, as indicated by 
Fig. 1, is within the bandwidth of the viscometer. 

Calibration of the oscillating screen viscometer amounts to a measurement of the 

3. Tests of the amlicabilitv of hvdrodvnamic similaritv 
A. Choice of fluid 
Carbon dioxide was chosen as the calibrating fluid because accurate viscosity data 

for C02 are available at kinematic viscosities comparable to that of xenon at its critical 
density. This criterion excluded liquids such as water and toluene. The additional 
requirement of operation between 0 and 60' C and at pressures less than 10 MPa excluded 
other well-measured gases such as argon and nitrogen. We excluded SF6 because its 
viscosity is known less accurately than that of C02. 

We made use of previous viscosity measurements included in the recent correlation 
of Vesovic et al. [2]. We initially considered the use of four density ranges: low (where 
@/&I is small), moderate but below the critical region, the critical region, and above the 
critical region. The most accurate measurements were made at low densities near room 
temperature. For these data we used the representation of Kestin, Ro, and Wakeham [3]. 
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Within *0.2%, the data from Kestin's group agree with both the more recent measurements 
by Vogel and Barkow [4] and the correlation of Ref.[2] over the 25-61" C temperature range 
used in the present measurements. 

At moderate densities we again used measurements from Kestin's group. Kestin, 
Korfali, and Sengers [5] reported viscosity measurements made at 31.6 C and at densities 

up to 307 kg.mW3. At the higher densities, their values disagree by as much as 1% with 
the older measurements of Kestin, Whitelaw, and Zien [6] .  This latter set we found useful 
because it reported the temperature dependence at moderate densities. 

We used no measurements made at densities near the critical density of C02. 

Vesovic et al. state that for densities p outside the limits 300 k g . m 3  < p < 600 kg. 
critical viscosity enhancement is less than 1%. Inside this region, experimental difficulties 
are greater, and Vesovic et al. could not correlate the data of Iwasaki and Takahashi [7] to 
better than 2%. Our own measurements [8] close to the critical point of C 0 2  were made 
only at the critical density. 

We made no measurements above 600 kg-m-3 because of the high pressures 
involved. 

The kinematic viscosity of C 0 2  is always higher than that of xenon at critical 
density. (The minimum kinematic viscosity tends to occur near the critical density.) This 

3 4 is not surprising: with the usual exceptions of He and He, xenon's high molecular weight 
causes its minimum kinematic viscosity to be less than that of any other fluid. However, 
the necessary range of penetration depths could still be covered by our C 0 2  measurements. 

-3 , the 

In the flight experiment, the expected range for the penetration length in xenon at 5 Hz is 

55 pm < 6 < 66 pm < (T-Tc)/Tc < (10) 
This range of penetration lengths was easily spanned by the present measurements. For 

example, this was done with C 0 2  at 295 kg-rn-' by operating the viscometer between 5.6 
and 8.1 Hz. 

B. Techniaue 
In principle self-calibration eed be done a ly after the viscometer is loaded with 

xenon; the present tests were made to demonstrate the applicability of hydrodynamic 
similarity for the oscillating viscometer. Potential causes of failure included all three 
aspects mentioned in the Introduction's first paragraph. For example, the flow could have 
been too large for the linearized Navier-Stokes equation to apply, there could have been itD 



7 

I 
I 
s 
1 
8 
I 
c 
1 

unexpected coupling to a bending mode of the screen, or the transducers could have had an 
unexpected frequency dependence. To look for such effects, we covered a wide range of 
conditions. We spanned a factor of 165 in density and a 50% change in both the viscosity 
and the kinematic viscosity. Measurements were made up to 25 Hz in the temperature 
range from 25 to 61°C. In contrast, the flight experiment will take place in a narrow range 
of conditions. Only one density will be used, and the viscosity is expected to change by 
less than a 40%. Frequencies less than 12.5 Hz will be used in the narrower temperature 
range of 16 to 45'C. 

function over the range 0-25 Hz at the five densities and temperatures listed in Table 2. 
The densities, determined by weighing the filled cell, were chosen to fall near those used 
Kestin, Whitelaw, and Zien [6]. We also made measurements at low frequencies to obtain 
the transducer coefficient ktr. Preceding these tests, we made measurements of the 
oscillator's resonance frequency and Q in vacuum between 7 and 81' C. In many cases, we 
extended the measurement time to  several hours to improve the signal-to-noise ratio. In 
most of the data plots, the trends of the data are clarified by averaging the data in groups 
of 10. 

Using the method previously described [l], we measured the oscillator's transfer 

C. Densitv deDendence of ? near room temwrature 
Fig. 2 shows the frequency response measured at four of the five different densities. 

(The data at 242.8 k g a ~ n - ~  are similar to those at 295.1 kg.m-3 and are omitted for 
clarity.) The viscometer was sensitive to viscosity changes over most of the measured 
frequency range. This is indicated by Fig. 1, which shows the viscometer's sensitivity when 

modeled as an ideal cylinder oscillating in C02  at a density of 295.1 kg-m-'. For 
example, at 8 Hz, a viscosity change of 10% would change the oscillator's response by 
about 8%. 

Using Eq.(9), we derived values of the function B(R/b). The results, which include 
corrections for the spring's anelastic character (Appendix C) and the effects of four 
low-pass electronic filters (Appendix D), are shown in Fig. 3. Also plotted is the value of 
Bc(R/S) calculated for the case of a transversely oscillating cylinder of radius e13 .8  pm 

191. (For clarity, (R/S)2 I B I, not I B I, is plotted.) 

of the ratio I B/BcI. To the extent that the data fall on a single, smooth curve, they are 
consistent with the expected hydrodynamic similarity. However, there are two types of 

The consistency of the data can be examined more closely in Fig. 4, which is a plot 
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small discrepancies. The first kind occurs at higher frequencies, especially above 15 Hz. 

An example is the upturn near R/S=0.04 of the data taken at 1.79 k g ~ r n - ~ .  This 
discrepancy may be due to incorrect modeling of the corrections for anelasticity or of the 
electronic filters. For example, in modeling the effect of a low-pass filter on the output of 
the square root amplifier we ignored the frequencies of all but the fundamental Fourier 
component. Also, we made no attempt to characterize anelastic effects above the 
resonance frequency of w 27r = 11.5 Hz. 

90.1 kg.mF3, can be removed if the value of the viscosity used at the higher density is 
reduced by 1%. This adjustment can be partially justified in two ways. First, as shown in 
Fig. 5, it yields a curve with continuous slope as well as value. Second, the amplitude of 
the adjustment is consistent with both the scatter of the original data and with the 
disagreement between the values of Kestin, Korfali, and Sengers [5] and of Kestin, 
Whitelaw, and Zien [6]. The viscosity data of Ref. [6] are about 1% less than those of 

Ref. [5] near 300 k g ~ m - ~ .  
Fig. 5 shows the experimentally derived function B(R/S) after addressing both 

discrepancies. Only data between 1 and 10 Hz were used, and the value of the viscosity 

used at 295.1 k g ~ r n - ~  from Kestin, Korfali, and Sengers [5] was lowered by 1%. The result 
is a smoothly varying function of penetration length that is independent of density and is 
fully consistent with hydrodynamic similarity. The strongest deviations from the cylinder 
model occur at large viscous penetration lengths, or low values of R/S. This is to be 
expected for R/S < 0.033, where S is half the dis tance between screen wires. We emphasize 
that the cylinder model was used only as a convenience to examine the data. No explicit 
hydrodynamic model is needed to obtain the hydrodynamic geometry function B(R/S). 
Also, the value chosen for the characteristic length R is unimportant for the calibration as 
long as the same length is used for both calibration and measurement. 

O /  
The second kind of discrepancy, which occurs between the data at 295.1 and 

D. TemDerature deDendence of n at moderate densitv 
Fig. 6 shows plots of I B/Bcl as a function of R/S obtained at 31.6, 34.6, and 40.6" c1 

for a constant density of 242.8 kg.m-'. For consistency in this comparison we used only 
data from one investigation, that of Kestin, Whitelaw, and Zien [6] .  Over the range 
0.2 < R/S < 0.3 the data for I B/Bcl obtained at 31.6 and 40.6"C are consistent to within 
*O.l% of the viscosity. The viscosity changes by 2.9% between these two temperatures. 
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Although noisier, the data at 34.6" C are significantly higher over the same range in R/S, 
corresponding to a viscosity disagreement of as much as -0.2%. We do not know the 
source of this small disagreement. 

E. Temperature dependence of TI at low density 
We measured the oscillator's transfer function in Cog at 25.6, 40.6, and 60.6" C for 

a constant density of 1.79 kg.mW3. Fig. 7 shows the transfer function measured at the 
three temperatures. (The temperature accuracy is i O . 1  K.) 

from varying the density, these tests were important for two reasons. First, the most 
accurate data for the viscosity are at low density. Second, the flight experiment will 
measure viscosity variation vs. temperature and thus is susceptible to systematic errors 
caused by temperature changes. To avoid exceeding the cell's pressure tolerance, the 
temperature range required to look for such errors is best explored at low density. 

The consistency of the values derived for the hydrodynamic geometry function 
B(R/6) can be seen in Fig. 8. As previously noted, there are small unexplained 
discrepancies at higher frequencies. However, the agreement is excellent up to about 
R/S=0.028 or about 12 Hz. In this frequency range, the corresponding discrepancies in 
viscosity fall within *O.l%. This error A7 is consistent with the data of Kestin, Ro, and 
Wakeham [3] within their stated accuracy. Although, this comparison does not test the 
viscometer's ability to measure absolute viscosity, it does test the viscometer's ability to 
measure the variation of viscosity with temperature. The agreement in the latter quantity 
is 

Although, the resulting variation in the viscosity (11%) was less than that resulting 

(11) 
Thus, the oscillating's accurate viscosity 
data available. 

4. Calibration Drocedure 
The following procedure will be used for the flight experiment. 

(1) With the viscometer cell evacuated, measure the oscillator's transfer function 
between 0.001 Hz and the resonance frequency (about 11.5 Hz) at temperatures 
between 10 and 60°C. This will determine the anelastic corrections to the torsion 
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fiber's spring constant. 

(2) With the viscometer cell evacuated, measure the transfer function near the 
resonance frequency at temperatures between 10 and 60" C. This will determine the 
temperature dependence of the oscillator's resonance frequency wo and quality factor 

Q- 

(3) After the loading the viscometer cell with xenon at its critical density, measure the 
transfer function between 1 and 12.5 Hz at a temperature Teal sufficiently far from 
Tc to eliminate significant effects due to stratification in Earth's gravity (say 
Td = Tc + 3 K). This will determine the hydrodynamic geometry function 
B d ( 9  over the range of 6 expected at 5 Hz in the flight experiment. This 
measurement will also be done during the flight experiment, in effect calibrating the 
viscometer in orbit. 

(4) Viscosity values at T close to Tc will be obtained by 
(a) Measuring H(w) at the temperature T. 
(b) Using Eq.(9) to obtain B(T). 
(c) Using Bcal(6) to invert B(T) and thereby obtain 6. 

2 (d) Calculating r] = (1/2)pwS . 

The resulting viscosity values will be relative to the viscosity at the calibrating 
temperature Td. This has already been measured to an accuracy of 0.8% [8] .  

Awendix A: Bandwidth of an oscillator viscometer 

made over a substantial range of frequencies. This section explains why, for fixed spring 
constant, an overdamped, or " 1 0 ~ 4 "  oscillator is necessary for such measurements. 

L o w 4  oscillators are superior for measuring viscosity over a wide range of 
frequencies because the transfer function of a h i g h 4  oscillator is sensitive to dissipation 
only near its resonance frequency wo. This can be illustrated by considering a torsion 
oscillator with moment of inertia I, spring constant k& and frequency-independent 
dissipation coefficient u. For a sinusoidal torque ~ ( w )  of fixed amplitude, the angular 
displacement B is given by 

The oscillating screen viscometer's calibration relies on viscosity measurements 
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(A1 ) 
T U  

2 e =  
[-Iw + iwv + ke] 

Changes in v can be detected through changes in 8. The oscillator's sensitivity to 
dissipation is measured by the normalized derivative 

Making the substitutions 

and 

ae -i wv 
-Bav= [-Iw + iwv + k d  2 

kg= Iw0 2 

Q + O -  
allows the oscillator's sensitivity to dissipation to be rewritten as 

(A51 
v a9 - - i  R 

-Baz/-  k-R2]Q + iR ' 
where R w/wo is the reduced frequency. ( he definition of Q in Eq.(A4) is the usual 
quality factor generalized to include overdamped oscillators.) 

dissipation coefficient at resonance. Far below resonance the elastic restoring force is much 
greater than the dissipative force, and far above resonance inertia is dominant. The 
oscillator's Q determines what is "near" and what is "far". Table 3 illustrates this point 
by using Eq.(A5) to compare the magnitudes of the dissipation sensitivities of two 
hypothetical oscillators whose Q's differ by a factor of 100. For example, if the oscillator 
with Q=lO is driven with constant torque at half its resonance frequency, a 100% increase 
in the dissipation will cause only a 6.7% decrease in the oscillator's amplitude. 

the lower and upper frequencies w- and w+ where the magnitude of the sensitivity falls to 
1/2. The relation of this bandwidth to the Q is given by 

Eq.(A5) shows that an oscillator's amplitude is most sensitive to changes of the 

The bandwidth in which the oscillator is sensitive to dissipation can be defined by 

w - w  + - =*. 
wO 

For a highly damped oscillator (Q<<l)  the bandwidth is more appropriately characterized 
by the ratio 

(A71 + 3 W 

- :&2* 
In contrast to the preceding illustration, the dissipation coefficient v of an oscillator 

(A71 + 3 W 

- :&2* 
In contrast to the preceding illustration, the dissipation coefficient v of an oscillator 

viscometer is a complex function of frequency. Although this complicates the analysis, 
numerical calculations with specific hydrodynamic models [lo] show that the above result 



12 

still holds qualitatively, namely a 10w-Q oscillator is sensitive to changes in the viscosity 
over a wider range of frequencies than a h i g h 4  oscillator. 

dissipation and by noise in the measurement. Thus, if a viscometer is operated outside its 
bandwidth, its insensitivity to the viscosity can be at least partially compensated by 
reducing the accompanying noise. This issue is quantified in Appendix B. 

The signal-to-noise ratio of a viscometer is determined both by its sensitivity to 

Amendix B: Sinnal-to-noise ratio of an oscillator viscometer 
The oscillating screen viscometer was developed because the Space Shuttle's typical 

vibration environment was predicted to degrade the precision of our earlier, h i g h 4  
oscillator technique to an unacceptable level. The advantage of a l o w 4  oscillator can be 
understood qualitatively by recalling that the rms noise magnitude of a high-Q oscillator 
at resonance is proportional to the oscillator's Q. In contrast, as shown by Eq.(A5), its 
sensitivity to changes in the dissipation is independent of Q. Thus, high-Q viscometers 
suffer more from random vibration. In the following, this argument is refined through a 
derivation of the signal-to-noise ratio for a measurement of an oscillator's dissipation. 

First, we will consider the detrimental effect of mechanical vibrations on the 
signal-to-noise ratio. Our model is an oscillator whose spring is attached to a randomly 
vibrating wall. When the oscillator is driven by changes of the wall's angular position BW, 
the equation of motion is 

d2 6 d6 
dt  d t  

IT- + v-- + k6( 6 - BW) = 0 

Because the positionsensing electrodes are fixed to the wall, we are interested in the 
root-mean-quare difference of the oscillator's position with respect to the wall's position, 
namely 

(sa)  2 112 66= [<(e- 8,) >] . 
The transfer function derived from Eq.(Bl) then gives the rms magnitude of the oscillator's 
position SO as a function of the rms magnitude of the wall's position Sew as 

2,112 
R bew. (B3) 11 + ( Q n )  

2 112 66 = 
[(!-fi2)2Q2 + I 

Eq.(B3) gives the "noise" in the oscillator's signal-t+noise ratio. The "signal" is 
defined as the change Ae0 in the oscillator's amplitude eo caused by a change Au in the 
oscillator's dissipation, namely 
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Using Eq.(A5) this is 

(B5) 
R Au 

2 2  2 2 1/2 u Oo- Atlo = 
[(1-R ) Q + I 

(Information contained in changes of the oscillator's phase are ignored here. This does not 
change the overall conclusions.) The ratio of Eqs.(B3) and (B5) gives the signal-to-noise 
ratio as 4- = [1+ (QR) 2-112 ] x O - - .  0 AU 

U 
W 

Eq.(B6) says that the signal-to-noise ratio of a dissipation measurement degrades 

significantly when the oscillator is operated at a reduced frequency R > Q-'. 

low reduced frequency. This unrealistic result occurred because sources of noise besides 
vibration were ignored. For example, usually there is also an electronic noise source of 
magnitude 60e which, unlike 60, depends only weakly on frequency. Including such noise in 
the signal-to-noise ratio gives 

Eq.(B6) also says that the signal-to-noise ratio is independent of Q in the limit of 

(B7) 
0 AV 

[ 6 0 2 + 6 v =  {[1+Q 2 2  R 160 2 + ' [ 1 + Q 2 ( R - l / f l w -  V .  3 
W 

Examination of Eq.( B7) reveals several ways to improve the signal-to-noise ratio. 
Perhaps the most obvious is to increase the amplitude Bo. There are two limits on this 
strategy. First, the fluid itself has a limiting nonlinearity near the critical point. The 
oscillating screen viscometer is normally operated near the shear rate S characteristic of 

xenon at a reduced temperature of e=2x1O4. The associated amplitude is 

eo = Lw s6 x radian, (B8) 
where 6 is the viscous penetration length and L M 0.01 m is the radius of the screen. Due to 
the scaling of the oscillator's resonance frequency with size, the operating frequency w 
cannot be reduced much from its nominal value of 5 Hz. Second, due to the finite dynamic 
range of any electronic system, the ratio ijBe/Bo cannot be reduced indefinitely by 
increasing Oo. 

As expected from the earlier qualitative argument, Eq.(B7) says that the 
signal-to-noise ratio can be improved by decreasing the oscillator's Q. An exception 
occurs for operation at resonance with dominant electronic noise, namely 6Be/60w >> Q. 
The signal-to-noise ratio is then 

which is independent of Q. Eq.(B9) is more likely to apply at higher frequencies due to 
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suppression of the vibration noise magnitude &Iw. 

Eq.(B7) is smallest. Assuming the noise drivers &ew and bee are frequency-independent, 
this optimum frequency is 

A further improvement is to operate at the frequency where the denominator of 

114 

( B W  
6 6: [ be; +-TI * 

Because Eq.(B10) is independent of Q, the optimum frequency can fall below even the 
oscillator's bandwidth of sensitivity to dissipation. 

reduce Mw, by using low-noise electronics to reduce Me, and by increasing the measuring 
time. 

Finally, the signal-to-noise ratio can be improved by using vibration isolation to 

In addition to  bandwidth and vibration insensitivity, there are two additional 
considerations for comparing 1ow-Q and h ighQ viscometers. The first consideration is 
that a higher-frequency mode of the oscillator can contribute to the transfer function and 
thereby complicate its analysis. This problem is more likely if the extra mode is nearby in 
frequency and, like the primary mode, has a low Q. Presumably, an analysis based on 
hydrodynamic similarity and additional calibration measurements could still be applied in 
this situation. Instead we used a simpler approach. First, we designed the oscillator so 
that the frequency of the next lowest mode was 5 times higher than oo. Second, we 
verified the consistency of results obtained at the same penetration length but with 
differing combinations of viscosity, density, and frequency. The extra effort needed to 
eliminate problems caused by higher modes is a disadvantage of l ou -Q oscillators. 

This dissipation is usually a slowly varying.function of frequency. Thus, because a h i g h 4  
oscillator can be used as a viscometer only in a narrow range of frequencies, the nonviscous 
dissipation can usually be adequately characterized by a single constant. A more elaborate 
characterization, e.g. the anelastic correction described in Appendix C, may be needed for a 
l o w 4  viscometer. The accuracy required of this characterization depends on the ratio of 
the nonviscous to viscous dissipations. Because this ratio is approximately proportional to 
the Q, it is crucial for a h i g h 4  viscometer. The lower sensitivity to nonviscous 
dissipation is an advantage of l o w 4  viscometers. 

The second consideration is accounting for the oscillator's nonviscous dissipation. 

Amendix C: Corrections for anelasticitv of the torsion fiber 
The assumption of an ideal torsion spring in Eqs.(8) and (9) is known to fail for real 
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materials. (Although not applicable here, one such failure is nonlinearity, for example, 
exceeding the yield stress.) In low-amplitude oscillators, the best known manifestation of 
nonideal behavior is internal friction. The general phenomenon is known as anelasticity, 
and a material's compliance J(w)  can be written as a complex function of frequency [ll] 

J(w)  = Jl(w) -iJ2(w) . (Cl> 

This representation is commonly used in polymer rheology [12], and it  has also been 
applied to "harder" materials such as metals, where there have been only limited studies of 
J( w). Several recent studies found no significant frequency dependence of the loss 
compliance J2(w) in Be-Cu torsion fibers [13,14] and in a steel flexure pivot [15]. In 
contrast, there are studies [16,17] of pure metals where J 2 ( 4  was found to be 
frequency-dependent , generally decreasing with frequency. 

The first, seen at low frequencies, was a phase lag approximately independent of frequency 
(-0.2" at room temperature). The second, seen in the same frequency range, was a 
frequency dependence of the magnitude of the spring constant (-1% decrease upon going 
from 0.1 to 0.001 Hz at room temperature). The third indication was a slow relaxation of 
the oscillator's position following a step change in the applied force. The amplitude of this 
"elastic after-effect" was about 1% of the rapid initial change of the position, and its 
relaxation could be approximately described by an exponential with a time constant of 
about 400 s. 

We initially considered other mechanisms for these effects. However, the elastic 
after-effect was observed with an applied magnetic as well as an electrostatic force, 
indicating behavior intrinsic to the oscillator. Also, a search at low frequencies for a subtle 
frequency-dependent error in the electronic instrumentation found nothing significant. We 
thus incorporated anelasticity into the description of the oscillator because it had a 
significant though small effect on the data. The final consistency achieved, both in a 
dispersion analysis of the anelasticity as well as in the viscosity data, justified this 
incorporation. 

for the transfer function to 

We found three indications for anelasticity in the oscillating screen's torsion fiber. 

Anelasticity was added to the model of the oscillating screen by generalizing Eq.(8) 

H(w)-l = ko[(l-02) + i02(p/p,)B(R/6) + k*] , (C2) - 
where the spring constant kg  was generalized to a complex function of frequency. This was 
done, consistent with Eq.(Cl), by modifying the spring constant kg  with a complex 



* 
perturbation k according to 

* 
k&w) kO[l + k ] , (C3) 

= kO[l + kl(w) + ik2(w)] . ((34) 

ko = Re[ko(wo)] . (C5) 

At the vacuum resonance frequency, the real part of the spring constant was defined to be 

This definition and the measurement of the oscillator's Q in vacuum fix the value of the 
anelastic correction at wo: 

* 
k (wo) 0 + iQ-' . (C6) 

In the absence of viscous damping the frequency-dependent part of the spring 
* 

constant k was obtained from the measured transfer function according to 

(C7) 
2 * 

k (w) = [H(w)/ktJ' - (1-0 ) . 
Fig. 9b shows a plot of the loss factor k2(w)'. We described its frequency dependence by a 
function linear in log( w), namely 

By making use of a Kramers-Kronig relation, the function kl( w) can be approximately 
described with no additional parameters according to: 

Fig. 9a 
Eq.(C7). The agreement was sensitive to the value chosen for the transducer coefficient ktr 
and therefore determined the value of ktr. In practice we used an initial value of ktr 
determined from H(w) at 0.1 Hz and then adjusted it slightly to force agreement with 
Eq.(CG), namely, k2(w0)-0. The values of k2(w) were insensitive to this adjustment of ktr. 

In general we required the values of the anelastic parameters A2 and B2 at all 
temperatures used in the viscosity measurements. For A2(T), we used measurements of 
the oscillator's Q in vacuum. For B2(T), we relied on low-frequency measurements made 
in vacuum at 23" C and in low-density C02  at higher temperatures. (The vacuum 
measurements were made before the anelastic effect was understood, and thus 
low-frequency measurements in vacuum were made only near room temperature. Future 
oscillators will be characterized in vacuum at low frequencies at other temperatures.) 
Fig. 10 summarizes the results for A2(T) and B2(T). 

ways. First, we used Eq.(C2) with k (w) given by Eqs.(C8) and (C9). Second, we made a 

We incorporated the anelastic correction into our viscosity measurements in two 
* 
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small correction to the nominal transducer coefficient k i r ,  which was defined by H(w) at  
0.1 Hz. This value was then adjusted for consistency with Eq.(C9) according to  

k =  tr 11- k t r  kl(O.l Hz)J * ( C W  

We emphasize that the parameters A2 and B2 used in the anelastic corrections were 
determined entirely by measurements made at  low frequency. The importance of the 
anelastic correction was greatest in the measurements of C 0 2  at low density, precisely 
where the existing viscosity data are the most accurate. Fig. 11 is the equivalent of Fig. 8 
but without incorporating the anelastic correction. As expected the correction is -1% in 
size. 

ADDendix D: Sensitivitv to kt- and electronic filter corrections 

ktr by varying ktr from its measured value. To achieve -+0.1% accuracy in the viscosity, 
ktr must be determined to within about 50.1%. 

constants used to correct for the effects of four low-pass electronic filters. The effect of 
these corrections is indicated by Fig. 12, which is the same as Fig. 3 but without filter 
corrections. The three most important filters all had time constants of about 1.2 ms. To 
achieve -+0.1% accuracy in the viscosity, each of these time constants must be known to 
within about *3%. 

We estimated the importance of errors in the determination of the transducer factor 

We also estimated the importance of errors in the determination of the time 
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Table 1: Approximate kinematic viscosity in m2-sW1 for representative densities of C 0 2  

near room temperature. The number in parentheses is the density in kg-m-'. Also shown 
is the minimum value for xenon. 

Fluid: m 2 f a  c020 CO2(3O0) w(J 
QlP:  5.1~10 -6 5 . 1 ~ 1 0 - ~  7.6~10 -8 4 . 7 ~ 1 0 ~  

Table 2: Viscosity values, in units of 
sources are indicated by letters as follows: (a)=[3], (b)=[5], (c)= 61. Although our densities 

interpolations in density and temperature were necessary. 

Paas, used in the calibration tests. The data 

and temperatures were chosen to be close to those used in the re / erenced studies, small 

p/kg.rn-3: - 1.79 - 18.9 - 90.1 242.8 295.1 

T('C) 
25.6 
31.6 
31.6 
34.6 
40.6 
60.6 

1.495(a) 
1.530( b) 1.6 16( b) 2.270( b) 

Table 3: Examples of the sensitivity to dissipation of two oscillators, defined as the 
magnitude of Eq.(A5). 

frea uency Q = 0.1 Q = 10 

"low" ( w / q )  = 1/21 0.99 0.067 

"high" ( W l " 0  = 2) 0.99 0.067 
resonance (w/wo = 1) 1 1 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

The viscometer's sensi tivity estimated from the model of a transversely oscillating 
cylinder with R-=13.8 pm. The two curves are for xenon at its critical density 
(1110 kg.m-3) and for C 0 2  at 295.1 kg.m-3. 

The transfer function H(w) measured in C02 at 1.79, 18.9, 90.1, and 295.1 k g ~ m - ~ .  
The lowest density data were obtained at 25.6" C, and the remainder were acquired 
at 31.6" C. (a) The magnitude of H. (b) The phase of H. 

The hydrodynamic geometry function B(R/6) calculated using Eq.(13) from the 
transfer function data shown in Fig. 2. The reference length is R~13.8 pm, the 
viscosity values are from Kestin, Korfali, and Sengers [5], and the points are 
averaged in groups of 10. The curves are calculated from the cylinder model. 
a The function (R/6) I B I is plotted to reduce the strong dependence on R/6. ri b The phase of B. 

The ratio 1 B/Bc I is plotted to ease examination of the results of Fig. 3. Small 
differences exist between data sets at high frequencies, especially above 15 Hz. 
There is also a frequency-independent offset between the data at 90.1 and at 
295.1 kg.m-3. This offset is comparable to differences between viscosity values 
reported from different investigations at this density. 

2 

The function B/Bc obtained from the results of Fig. 3 after reducing the viscosity 

value from the data at 295.1 kg.m-3 by 1.0%. Only data in the frequency range 
1-10 Hz are plotted. Because the points fall on a single smooth curve, they are 
consistent with the use of hydrodynamic similarity. The pronounced deviations 
from the ideal cylinder calculation Bc at low frequency are to be expected: the 
penetration depth is half the distance between screen wires at R/6=0.033. (a) The 
magnitude of B/Bc. (b) The phase of B/Bc. 

The function B/Bc obtained by varying the temperature at 242.8 kg.m-3. For 
consistency in this comparison we used only data from Kestin, Whitelaw, and Zien 
[6]. Over the range 0.2 < R/S < 0.3 the traces of IB/BcI obtained from the 31.6 
and 40.6" C data are consistent to within a viscosity error of *O.l%. The viscosity 
changes by 2.9% between these two temperatures. The trace from the 34.6" C data 
is significantly higher over the same range in R/S, corresponding to a viscosity 
disagreement of as much as -0.2%. 

The oscillator's transfer function H(w) measured in C02 at 1.79 kg.m-3 at 25.6, 
40.6, and 60.6"C. Although, the resulting variation in the viscosity (11%) was less 
than that resulting from varying the density, the most accurate data sets available 
are for viscosity vs. temperature at low density. (a) The magnitude of H. (b) The 
phase of H. 

The hydrodynamic geometry function B(R/S). The agreement is excellent up to 
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about R/S=0.028 or about 12 Hz. At *O.l%, the corresponding error in viscosity is 
consistent with the data of Kestin, Ro, and Wakeham [3] to within their stated 
accuracy. Thus, the oscillating's screen performance is consistent with the most 
accurate viscosity data available. (a) The magnitude of B/Bc. (b) The phase of 

B/Bc* 

9. The anelastic contribution to the spring constant as defined by Eqs.(13-15), 
measured at 23'C. (a) The real part kl(w). The curve is calculated from Eq.(20) 
using parameters derived from the linear description of k2(u). (b) The imaginary 
part k2(w). The linear description of the data, Eq.(19), was forced to go through 

the vacuum measurement of Q-', indicated by the lower circle. Because the 
low-frequency measurements were made in a degraded vacuum, viscous drag 
increased the apparent value of k2 at frequencies above 1 Hz. The associated 

increased value of Q-' is indicated by the upper circle. 

10. The measured temperature-dependent values of the anelastic parameters A2 and 
B2, used in Eqs.(lS) and (20). (a) The values of A2 were defined by the values of 

Q1 measured in vacuum. The curve is an empirical description of the data. (b) The 
values of B2 derived from plots such as Fig. 9b. The straight line is an empirical 
description of the data. 

The influence of the anelastic corrections can be seen by omitting them from the 
analysis used to draw Fig. 8a. 

The importance of the corrections for the four low-pass electronic filters can be seen 
by omitting them from the analysis used to draw Fig. 3. 

11. 

12. 
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